| REV. | REVISION | BY | APPR. | DATE |
| ---: | :---: | :---: | :---: | :---: | :---: |
| 0 | Eng. ReT. Per ECF \#41375 | | 08 | $7-26-83$ |

NOV 141983

REFERENCE COPY VOID FOR PRODUCTION

TABLE OF CONTENTS

PAGE

1.0 INTRODUCTION 6
2.0 RIDE DESCRIPTION 6
2.1 Environmental Conditions 7
2.2 Storage Conditions 7
2.3 Mechanical Summary 7
2.4 Propulsion Description 8
2.5 Test Program 10
2.6 Noise Spec 12
3.0 RIDE ANALYSIS 13
3.1 Vehicle Load Calculations 13
3.2 Track Profile Calculations 14
3.3 Motor Duty Cycle 16
3.4 Control Output Power 17
4.0 AC MOTORS AND BRAKES 18
4.1 AC Motor 18
4.2 AC Brake 18
4.3 Drive Mechanism 19
GE Motor Dimensions 20
5.0 VEHICLE DRIVE SYSTEM 22
5.1 Drive System 22
5.2 Motor Control 22
6.0 RIDE CONTROL SYSTEM 25
6.1 GE Inverter Control System 26
6.1.1 Isolation Transformer 26
6.1.2 Circuit Breaker 26
6.1.3 Static Rectifier 26
6.1.4 PWM Inverters 28
6.1.5 Load Switch Control 30
6.2 Load/Unload Belt System 32
6.2.1 Isolation Transformer 32
6.2.2 Circuit Breaker 32
6.2.3 DC Power System 32
6.2.4 Drive System Protection 33
6.2.5 Enclosures 33
6.2.6 Motors 33
6.3 Traveling Video Finale 36
6.4 IR Sensor Geometry 40
6.5 Control Algorithm Requirements 40
6.6 Maintenance Control Systems 41
6.6.1 Maintenance Stations 41
6.6.2 Maintenance Area and Spare Vehicle Track 41
6.7 Slide-rail Bus Bar Power Feed 42
7.0 GPRCS MONITOR SYSTEM 45
7.1 Parallel Inputs 45
7.2 Serial Inputs 45
7.3 Parallel Outputs 45
7.4 Serial Outputs 45
7.5 Monitor System Messages 47
7.5.1 Hardware Displays 47
7.5.2 Serial Inputs 47
7.6 RPB I/O Tables 47
\#0 RIDE STOP SYSTEMS 53
8.1 Ride E-Stop 53
8.2 Belt E-Stop 53
8.3 Controlled Stop 53
9.0 OPERATOR CONSOLES 54
9.1 Load Console - ROC 01 54
9.1.1 Touchscreen Control Functions 54
9.1.2 Hardware Control Functions 55
9.2 Equipment Room Console - ROC 02 55
9.2.1 Touchscreen Control Functions 55
9.2.2 Hardware Control Functions 56
9.3 Unload Console - ROC 03 56
9.3.1 Touchscreen Control Functions 56
9.3.2 Hardware Control Functions 56
PAGE
RIGURE 2A - MOTOR DRIVE CONFIGURATION 8
FIGURE 2B - NOISE CRITERIA (NC) CURVES 12
FIGURE 4A - DUAL AC MOTOR UNIT 19
FIGURE 5A - VEHICLE DRIVE SYSTEM 23
FIGURE 5B - MOTOR BOX WIRING 24
FIGURE 6A - SINGLE LINE CONTROL SYSTEM 27
FIGURE 6B - LOAD SWITCH CONTROL SYSTEM 31
FIGURE 6C - SINGLE LINE DC CONVEYOR DRIVES 35
FIGURE 6D - VEHICLE/TRAVELING VIDEO SCREEN LAYOUT 37
FIGURE 6E - TRAVELING VIDEO/SCREEN CONTROL SYSTEM 38
FIGURE 6F - TRAVELING VIDEO SCREEN/VEHICLE GEOMETRY 39
FIGURE 6G - BUS BAR POWER DISTRIBUTION SYSTEM 43
FIGURE 7A - GPRCS BLOCK DIAGRAM 46

RIDE DESCRIPTION
The ride utilizes 175 vehicles in a totally linked ride system. Each vehicle accommodates four people. The ride has a normal constant speed of 1.5 ft . per second and is capable of a lower speed of approximately 0.75 ft . per second. The rate of acceleration should be adjustable to achieve full speed in 2 to 20 seconds, with separate accel and decel rates.

Track length is 1346 ft . and rises 31 ft . vertically. The ride utilizes separate "load" and "unload" belt walkways to assist in loading people onto the vehicle. The belt motor controls must follow the vehicle accel/decel rates and velocity. The ride is capable of loading wheelchair-bound riders and thus may be required to stop or run at a relatively low speed, the rate to be determined by WED Operations.

Mechanical Summary

```
Number of Vehicles = 175
Number of people per vehicle = 4
Load wt (w/live load) = 2300 lbs
Coefficient of rolling fric*ion = 0.05
speed range = 0 to l.65 ft./sec.
wheel diameter : = 8 inches
gear ratio = 25:l
pulley ratio = 1.3:1
```

The propulsion system for each vehicle will consist of two motors, one per bogie, which will turn 2 wheels to provide a friction drive on a pipe for an underslung vehicle.

FIGURE 2A - MOTOR DRIVE CONFIGURATION

The ride may be initiated and run from the "load" or "equipment room" consoles. A "Touch Screen" CRT is used as the operator control panel.

The operator may start the ride (after an audible warning spiel) by touching "start" then "LO speed" or "HI speed" on the touchscreen. The command will be executed as a positive acceleration command to the three inverters and the belt walkway DC drives simultaneously.

The inverters provide a constant torque mode speed regulation through a frequency range of 0 to 60 Hz , and constant horsepower control over a frequency range of 60 to 90 Hz .

The control system is provided with 460 to 230 VAC (delta to wye) transformer isolation, to provide 230 VAC to a static AC to DC rectifier. The rectified 300 VDC bus is shared by the 6 pulse width modulated (PWM) inverters (5 active, 1 standby) ; cabinets share the 300 VDC bus as an integral part of the system.

The 300 VDC bus provides a common power source for all the inverters. This allows a considerable amount of system energy to be regenerated, and thus reduces the overall power required to operate the ride.

The inverters provide 3 -phase power to the vehicles through a three-channel slide-rail power bus feed, which provides separate zone control to the ride. Each inverter provides 3 -phase power at a specific frequency. The "load" that the ride system represents is divided into three specific loads: +12 degree grade, level grade, and -12 degree grade sections of track (Refer to Interconnect Diagram, Ride Control System, CONT-157861).

The three-channel inverter power bus bar is divided into thirteen isolated track segments, with eleven loo-amp circuit breakers. The eleven isolated power feeds are connected, through the load switch control cabinet, to separate track segments according to load and power requirements, which calls for five 100 KVA inverters. The five inverters are divided as follows:

Inverter	Frequency	Load	Track Sections
PWM 01	Hi	+12	3 (100 AMP CB)
PWM 02	Med	0	2 (100 AMP CB)
PWM 03	Med	0	2 (100 AMP CB)
PWM 04	Med	0	2 (100 AMP CB)
PWM 05	Lo	-12	2 (100 AMP CB)

The objective of the multiple frequency inverter scheme is to provide variable thrust to the three specific load areas: +12 degree lift, 0 degree friction, and -12 degree retard. The optimal result is to reduce the tow bar \pm thrust (tension or compression) to zero.

The slide-rail power bus provides 3-phase AC to the two AC induction motors on each vehicle. Each vehicle will have thermal overload and overtemp circuitry to automatically disconnect the vehicle from the power bus if a problem occurs. A green lamp is provided as a visual indication for operations personnel that a vehicle's motor system is operational; an associated infrared LED is also read automatically at the four maintenance stations.

Each inverter is set to a specific frequency in order to provide a specific horsepower in either a "motoring" (power to the motor) or a "regeneration" (power from the motor) mode. This concept of control can provide for "load sharing" with a high-slip type AC motor as long as the wheel size differential is not substantial.

This ride system utilizes a tes't track, at "Tujunga", $C A$, with several curves and a vertical rise of 10 feet. This test track will be utilized to test mechanical and electrical ride components from November, 1981 to October, 1983.

Ride system testing began in 1981 with a single vehicle, controlled by two isolated bus bar segments, under the control of two VVI (Variable Input/Variable Output) inverters, which provide motoring and retard thrusts to the vehicle.

The second phase of testing begins with the installation of twenty-five vehicles, all linked, to test mechanical components. This phase of testing will be as close to the "real" pavilion ride system as possible. All equipment in the test track area will be enclosed within a tent. Mechanical testing starts about August, 1982, and continues through October, 1983.

In order to support this testing program, an auxiliary power unit will be used to provide 60 Hz , 3-phase power from a continuous bus bar feed throughout the test track circuit. The control equipment listed below will be supplied by the vendor, including a two-step across-line motor starter, sized for twenty-five vehicles.
A. Three phase input circuit breaker - vendor STD for a 50 HP system.
B. Three phase output circhit breaker for 50 HP system (25 vehicles).
C. Three pole AC starter with 120 VAC contactor coil and start/stop switch.
D. NEMA 1 enclosure for floor mounting of equipment in the present temporary test room.
E. Separate switch box with start-stop switch.

The third phase of testing will demonstrate "complete system" operation and:
A. Establish frequency as a function of load for each zone.
B. Establish three frequencies (all lifts \& retards) that are compatible with the optimization of the mechanical system (drawbar tension \& compression, car swing, etc.).
C. Test bus bar operation - To allow HP zone changes without arcing or causing inverter load faults due to in-rush currents.
D. Test vehicle braking system for accels and decels.
E. Test vehicle off-board infrared identification system.

The final test track support calls for the installation of three 30 KVA VVI inverters to replace the Pavilion Ride Control Equipment, and allow continued operation with variable speed and variable thrust adjustments.

All sound generated by motors, gearboxes, contactors, and any mechanicąl or electrical devices will not exceed a noise criterion value of NC-45 anywhere in the show area. The NC-45 curve is shown on the accompanying sheet. The measurement of this value shall be made in octave bands using an ANSI Sl.4-1971 Type 1 Sound Level Meter.

FIGURE 2B - NOISE CRITERIA (NC) CURVES

```
3.1 Vehicle Load Calculations
* Mechanical System Parameters
```

Vehicle Length: Vehicle Weight: Rolling Friction: Number Of Vehicles: Velocity

```
7 . 7 5 ~ f e e t
```

7 . 7 5 ~ f e e t
2300 lbs (w/live Load)
2300 lbs (w/live Load)
0.05
0.05
175
175
0 to 1.65 ft/sec.
0 to 1.65 ft/sec.

* Linear Calculations
+l2 degree grade thrusts:
F}=\operatorname{Sin}12\times2300 1\textrm{bs}+\operatorname{Cos l2 x (.05) x 2300 lbs
=478 lbs + 113 1bs
= 591 1bs

```

Level grade thrusts:
```

F = Cos 0 x (.05) x 2300 lbs
= il5 lbs
-12 degree grade thrusts:
F}=\operatorname{Sin}12\times2300 lbs-Cos 12 x (.05) x 2300 lb
=-478 1bs + 113 1bs
= -365 lbs

```

\section*{Track Profile Calculations}

Refer to drawings C3PDX1 Rev. P and C3PDX2 Rev. P, which provide çurve and elevation data from the circled reference points on the drawings.
* Track System Parameters

Total Track Length: 1346 feet
Total Grades (not exact)
+12 Grades: 301 feet
Level Grades: 755 feet
-12 Grades: 292 feet
+12 Degree Grades
3 - 92
18 - 2130
23 - 26 37
27 - 3013
31 - \(34 \quad 24\)
37 - \(40 \quad 23\)
77 - 8798
111 - \(113 \quad-\frac{44}{301}\)
Total \(\overline{3} \overline{01}\) Feet
\(F=\frac{591 \text { libs }}{\text { car }} \times \frac{\text { car }}{7.75 \text { feet }} \times \frac{301 \text { feet }}{\text { track }}=22954 \mathrm{lbs}\)
\(\mathrm{HP}=\frac{22954 \mathrm{lbs}(1.65 \mathrm{~F} / \mathrm{S})}{550(.90)}=76 \mathrm{HP}\)
```

 O Degree Grades
 113-3 172
 9 - 18 112
 21 - 23 10
 26-27 10
 30 - 31 12
 34 - 37 72
 40 - 49 134
 58 - 63 43
 66 - 67 21
 74 - 77 40
 87 - 91 59
 97 - 99 10
 102 - 109 60
 Total \overline{755 Feet}
 F = \frac{115 lbs }{car}}\times\frac{car}{7.75 feet}\times\frac{755 feet}{\mathrm{ track}}=11203 lb
 HP}=\frac{11203 1\textrm{bs (1.65 F/S})}{550(.90)}=37\textrm{HP
-12 Degree Grades
109-111 43
49 - 58 44
63 - 66 51
67 - 74 74
91 - 97 37
99-102 -43
Total }\overline{292}\mathrm{ Feet
F = - 365 lbs }\times\frac{\mathrm{ car }}{\mathrm{ car }
HP}=\frac{13752 1\textrm{bs}(1.65 F/S}{5})=-46\textrm{HP

```
```

Motor Duty Cycle
+12 Degree Grade
= 301 ft x Sec}=201 Second
O Degree Grade
= 754 ft x Sec
-12 Degree Grade
= 292 ft x Sec
FRMS = (F+12 x t+12)+(F0 x to) +(F-12 xT-12)
= (591 x 201) +(115 x 503) +(365 x 195)
= 338 lbs
HP(RMS)}=\frac{338 1\textrm{bs x 1.5 F/S}}{550(.9)}=1.02 H

```

\section*{Control Output Power}
(Assume 50\% Electrical Losses)
A. \(+12^{\circ}\) Degree Grades Inverter
\[
\mathrm{P}=76 \mathrm{HP} \times \frac{760 \text { Watts }}{\mathrm{HP}} \times 1.5=86.6 \mathrm{KW}
\]
B. \(O\) Degree Grades Inverter
\[
\mathrm{P}=37 \mathrm{HP} \times \frac{760 \text { Watts }}{\mathrm{HP}} \times 1.5=48.0 \mathrm{KW}
\]
C. -12 Degree Grades Inverter
\[
\mathrm{P}=46 \mathrm{HP} \times \frac{760 \text { Watts }}{\mathrm{HP}} \times 1.5=60.0 \mathrm{KW}
\]

Two AC induction motors will be required for each vehicle. Each motor will be supplied with a standard rear mount brake (Refer to insert GEM-2576A).
4.1

AC Motor

Model Number
Type \(\quad 1 \mathrm{HP}, 230\) VAC, 3-phase, hi-slip (10\%), induction motor

1620 RPM @ \(10 \%\) slip
\(40^{\circ} \mathrm{C}\) @ 80\% humidity
continuous, 17 hours/day
I to II
\(143 T\) open drip proof (splash guard)
foot mount
to accept sheave hub for timing belts with tapered hub, capable of mounting hollow shaft standard torque brake on rear of motor

Stator Voltage

Input

\section*{5 K 48 VG 8050 V}

Base Speed
Ambient Conditions
Duty Cycle
Service Class
Frame
Mounting
Shaft
vendor's standard-wound stator with klixons set at operating temperature to protect the motor from overtemp
from vendor's PWM inverter output of 230VAC, \(60 \mathrm{~Hz}, 3\)-phase at base speed

\subsection*{4.2 AC Brake}

To mount on the rear of the AC motor (Section 4.1).

Torque
Ambient Conditions
Solenoid

Brake Release
Noise

3 foot-pounds minimum
\(40^{\circ} \mathrm{C}\) @ \(80 \%\) humidity
230 VAC, l-phase, 60 Hz , controlled from relay outside of motor frame, actuate (brake on) at no voltage
manual release"with easy access
the brake must not chatter in a manual release or normal pick up; final test and determination to be concluded at Tujunga Test Track.

The dual AC motor propulsion unit is mounted on each vehicle as illustrated in Figure 4A.


FIGURE AA - DUAL AC MOTOR UNIT

\section*{TENSIONS}





NOTE: FOR NET MOTOR WEIGHT SUBTRACT 2 LBS. FOR 140 IA \& 4 LBS. FOR 180 BIA.
- TOLERANCE +.0000 , \(-.0005\)
\(\triangle\) STRAIGHT PART OF SHAFT
\(\ddagger\) TOLERANCE \(+.00,-.03\)
* HOLE FOR \(1 / 2\) INCH AND KNOCKOUT FOR \(3 / 4\) CONDIT

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline P & FRAME & BRAKE & L & AD & Note & YM \\
\hline 1 & . \(1433^{\circ}\) & \[
\frac{2 \cdot 61003-24}{2 \cdot 62006-24}
\] & 11.33 & 7.64 & 3.12 & 6.81 \\
\hline 2 & 145 T & \[
\begin{aligned}
& 2-61003-24 \\
& 2-62006-24
\end{aligned}
\] & 11.83 & 8.14 & & \\
\hline 3 & \(143 T\) & 2.62010 .24 & 11.33 & 7.64 & & \\
\hline 4 & 145 T & 2-62010-24 & 11.63 & 8.14 & & \\
\hline 5 & 145 T & \[
\begin{aligned}
& 2.63015 \cdot 24 \\
& 2.63020-24
\end{aligned}
\] & 12.01 & 8.46 & & \\
\hline 6 & \(143 T\) & \[
\begin{aligned}
& 2.63015 \cdot 24 \\
& 2.63020-24
\end{aligned}
\] & 11.51 & 7.96 & i & \\
\hline 7 & \(145 T\) & \[
\begin{aligned}
& 4-61003 \cdot 30 \\
& 4-62006-30
\end{aligned}
\] & 12.58 & 8.26 & 3.50 & \(6.8 \varepsilon\) \\
\hline 8 & \(143 T\) & \[
\begin{array}{|l}
4-61003-30 \\
4-62006-30 \\
\hline
\end{array}
\] & 12.08 & 7.76 & & \\
\hline 9 & \(145 T\) & 4-62010-30 & 12.58 & 8.26 & & \\
\hline 10 & \(143 T\) & \[
\begin{aligned}
& 4.63015 \cdot 30 \\
& 4.63020 .30
\end{aligned}
\] & 12.46 & 9.14 & & \\
\hline 11 & 145 T & \[
\begin{aligned}
& 4.63015 .30 \\
& 4.63020 .30
\end{aligned}
\] & 12.96 & 9.64 & & \\
\hline 12 & 143 T & 4.62010-30 & 12.08 & 7.76 & 1 & \\
\hline
\end{tabular}

\section*{5.2}

\section*{Drive System}

Figure 5 A illustrates the "vehicle drive system" on board each vehicle. This drive system provides the following features:
A. High-slip AC motors to compensate for wheel wear
B. Overload circuit breakers with manual reset
C. Bi-metal thermostats (klixons) in the stators to provide case overtemperature protection
D. Disc brakes, with manual release, to provide static (zero-speed) braking
E. A 3-pole contactor
F. Gear boxes with a 25 to 1 ratio, with a 1.3 to 1 pulley ratio

\section*{Motor Control}

Each vehicle utilizes an "on board" motor control box which provides the relay logic control to implement current overload protection, thermal protection, and control logic for the vehicle. Figure 5B illustrates the "control ladder logic" required to provide the following functions:
A. connect proper inverter bus
B. disconnect vehicle motors due to: motor overtemp (K1, L2) : current overload (OL) : manual switch (SI)
C. engage motor brakes B1 and B2 through bus bar feed


FIGURE 5A - VEHICLE DRIVE SYSTEM


FIGURE SB - MOTOR BOX WIRING

The Ride Control System consists of several elements, as follows:
A. GE Inverter Control System - controls the speed of the 175 vehicles on the pavilion ride
B. Load Belt Control - controls the speed of the "Load Belt"
C. Unload Belt Control - controls the speed of the "Unload"
D. TV Finale Control System - synchronizes the position of linked "traveling video Frames" with the ride vehicles
E. Maintenance Control Systems - utilized to move one or
F. Bus Bar Power Feeds - describes bus bar functions and
G. Monitor System - computer monitoring and reporting of
H. Ride Stop Functions - location and operation of all
I. Operator Consoles - function and location of all operator

Refer to FIGURE 6A, which illustrates the single line control system.

\subsection*{6.1.1 Isolation Transformer}

460 to 230 VAC (delta to wye) 3 -phase, \(500 \mathrm{KVA} @ 40^{\circ} \mathrm{C}\) ambient, with \(\pm 5 \%\) taps, in a Nema 1 floor mount enclosure.
6.1.2 Circuit Breaker

Vendor's standard to protect line from \(x f m r\) primary.
6.1.3 Static Rectifier

Input Voltage: 230 VAC, 3-phase
Input Frequency: \(\quad 60 \mathrm{~Hz} \pm 3 \mathrm{~Hz}\)
Output Voltage: 310 VDC
Output Power: \(\quad 400\) KWDC continuous @ \(40^{\circ} \mathrm{C}\) ambient
Protection: Door mounted circuit breaker/power disconnect switch - sized to protect xfmr from system faults, and provide total power disconnect for control system

Enclosure: Nema l - double door, floor standing, height not to exceed \(90^{\prime \prime}\), depth and width - vendor's standard

Displays:
Door Mounted
1. Power On
2. Input power

Red lamp with normally-open contact for computer input

RMS AC input power readout on a 4-digit digital display (000.0 to 999.9 kilowatts) to measure ride system input power, with a buffer for analog input to a computer, scaled for 0 to \(10 \mathrm{VDC}(1 \mathrm{~V}=110 \mathrm{~kW})\)


FIGURE GA - SINGLE LINE CONTROL SYSTEM


Thrust +12 Degree Grades
\[
\mathrm{F}=\frac{591}{.7 .9 \mathrm{lbs}}
\]
\[
\mathrm{HP}=\frac{591 \#}{550} \frac{(1.8)}{(.85)}=2.28
\]
\[
\text { Par }=2.28(750)(1.5)=2600 \text { Watts }
\]
\[
I=\frac{2600}{230}=11.2 \text { Amps Leg-Leg }
\]
\[
I=\frac{11.2}{[3] 1 / 2}=6.2 \text { Amps Per Line }
\]

Thrust 0 Degree Grades
\[
I=\frac{6.2}{1} \times \frac{115}{591}=1.2 \text { Amps Per Line }
\]

Thrust -12 Degree Grades
\[
I=\frac{6.2}{1} \times \frac{365}{591}=3.8 \text { Amps Per Line }
\]

Refer to FIGURE 6B, which illustrates the load switch control system.

The objective of the load control cross-connect scheme is to reduce the amount of down-time through the use of a "Standby" motor control inverter to replace one of five "On Line" motor control inverters in the event of a failure.

Load Switch Control should contain:
A. Twelve 3-phase, 230 VAC, 100 Amp circuit breakers with auxiliary NO/NC contacts
B. Twelve 3.5-digit digital display current meters (0 to 100 Amps), to monitor leg current on one of the three phases
C. Door mounted panel display to indicate which power circuit is in operation
D. Tabular display to illustrate which PWM is "On Line" and what load it is servicing
E. Cross Connect - the mechanism for cross connecting source


FIGURE GB - LOAD SWITCH CONTROL SYSTEM

\section*{Load/Unload Belt System}

The Load and Unload Belt Drive Systems are identical units which must be integrated into the total ride system. The Load Belt Walkway utilizes a separate drive motor for the handrail. The belt walkways are manufactured by Westmont industries of California.

The belt drive systems are required to follow the master reference command to the PWM's so that all systems accel \& decel at the same rate, to the same linear velocity.
6.2.1 Isolation Transformer

460 to 230 VAC , Delta to Wye, 3 -phase, 35 KVA @ \(40^{\circ} \mathrm{C}\) ambient, with \(\pm 10 \%\) taps, in a Nema 1 floor mount enclosure
6.2.2 Circuit Breaker

460 VAC, 3 -pole, sized to protect the line from transformer faults, in a Nema \(l\) wall mount enclosure
6.2.3 DC Power System

Input Voltage:
\(230 \mathrm{VAC}, \pm 10 \%\)
Input Frequency:
\(60 \mathrm{~Hz} \pm 3 \mathrm{~Hz}\)
Output Power:
15 KW Base Speed
Speed Range:
0 to 1150 RPM
Speed regulation:

Torque:
\(\pm 1 \%\) of set speed from 500 to 1750 RPM, with tachometer

45 Ft.-lbs continuous duty @ \(40^{\circ} \mathrm{C}\) ambient over full speed range. Constant torque rating from zero speed to base speed

Duty Cycle:
17 hour duty cycle @ service class I to II
Acceleration:

Deceleration:

Regeneration:
Control:
Adjustable - from 2 to 20 seconds required to reach operating speed

Adjustable - from 2 to 20 seconds required to reach zero speed

Non-regenerative type system
Local manual operator panel required
6.2.6 Motors

The motors for Load Belt Drive, Unload Belt Drive, and Load Belt Handrail are to be supplied by Westmont Industries, with the finished units' specifications as follows:

Load Belt

\section*{Motor type: 15 HP}

Frame: 240 At

Armature voltage:
240 VDC
Winding:
Torque:

Brake:

Speed:
Protection:

Tachometer:

Shunt wound
50 Ft. -lb. torque (constant from zero to base speed @ \(40^{\circ} \mathrm{C}\) ambient temp)

Integral rear mount AC standard brake w/manual release

1150 RPM base speed
Dual klixons (standard) for thermal protection

Extended shaft to mount an AC tach generator, @ 90 Volts per 1000 RPM
Motor type: \(\quad 15 \mathrm{HP}\)

Frame:
Armature voltage:
Winding:
Torque:

Brake:

Speed:
Protection:

Tachometer:

240 At
240 VDC
Shunt wound
\(50 \mathrm{Ft}-.1 \mathrm{~b}\). torque (constant from zero to base speed @ \(40^{\circ} \mathrm{C}\) ambient temp)

Integral rear mount AC standard brake w/manual release

1150 RPM base speed
Dual klixons (standard) for thermal protection

Extended shaft to mount an AC tach generator, @ 90 Volts per 1000 RPM

Load Belt Handrail
Motor type: \(\quad 1.5 \mathrm{HP}\)

\section*{Frame:}

Field voltage
186 ATC C - face mount
150 VDC
Armature voltage:
240 VDC
Winding:
Shunt wound
speed:
1150 RPM base speed
Protection:

Tachometer:
Dual klixons (standard) for thermal protection

Extended shaft to mount an AC tach generator, @ 90 Volts per 1000 RPM


FIGURE CC - SINGLE LINE DC CONVEYOR DRIVES

The Traveling Video Finale show area provides a conclusion to the ride. Nineteen picture frames moving on a track are synchronized with the ride vehicles, such that seven frames are aligned with the seven ride vehicles in the scene at any one time.

Seven TV projectors are used to rear-project images on a fifty foot wide screen behind the moving frames. The pictures being projected are electronically wiped from projector to projector in synchronization with the moving frames. This system allows continuous viewing of a framed show scenario projected from the TV projectors while the vehicles continue to be in motion. Refer to FIGURE 6D.

The control system (FIGURE 6E) utilizes Infrared (IR) sensors to provide a continuous stream of pulses that provide position data on the frame and vehicle, relative to each other, in the curve of the finale show area. The pulses are produced when slotted fins mounted on the vehicles and traveling video frames interrupt the IR beams.

The slotted fins (Figure 6D) are read at sensors \(1 A\) and \(1 B\) for vehicles, and 2 A and 2 B for frames. Utilization of redundant offset outputs ( \(A\) and \(B\) ) allows overlapping readings from two adjacent slotted fins (on both the video frame track and the vehicle track). This provides continuous pulse trains to the GPRCS RDC (Remote Data Concentrator) for summation of the position error and subsequent control signal outputs to the video processor and traveling video screen drive systems.

The RDC counts vehicle pulses and frame pulses and subtracts to provide a "count error". The RDC provides a 10 bit parallel output to a D/A converter which is the control signal to the video screen drive. This allows adjustment of position loop gain through software modification of the volts-per-count error output.

Since the vehicle and frame counts are equally weighted to provide synchronized positioning, it is relatively easy to determine position error. The 400 counts per frame is based on the video control requirement of 267 counts for a 60 HZ vertical sweep, at 18 inches per second frame speed.


FIGURE 6D - VEHICLE/TRAVELING VIDEO SCREEN LAYOUT


FIGURE GE - TRAVELING VIDEO/SCREEN CONTROL SYSTEM


FIGURE 6F - TRAVELING VIDEO SCREEN/VEHICLE GEOMETRY

\section*{IR Sensor Geometry}

Frame IR Sensor
Mount radius
Arc length
Counts/frame
Vehicle pulse width
\(=34.5\) feet

The foregoing \(40.5 \times(0.2)=0.235\) inches
mounting standoffs on the frames be used to adjust sensor possible to achieve the calcula and vehicles. If it is not
A. Determine frame radius of mount
B. Calculate the number of counts at radius
C. Frame counts must equal vehicle counts
D. Calcuate new vehicle sensor radius
6.5 Control Algorithm Requirements

Inputs
Vehicle Pulses
Vehicle Present
\(=400\) Counts per vehicle
Vehicle Load Pulse
Vehicle Pulse Sensor
Vehicle Present Sensor
\(=1\) Count per vehicle
\(=\quad 1\) Pulse per count

Frame Pulses
Frame Present
Frame Load Pulse
\(=\quad A\) or \(B\)
\(=A\) or \(B\)

Frame Pulse Sensor
\(=400\) Counts per vehicle

Frame Present Sensor
\(=1\) Pulse per count

GE Motor Fault
\(=A\) or \(B\)
Overload \(=1\)
Overtemp
Phase Loss
Tach
Over Speed
\(=\quad 1\)

Servo Monitor Pulse Error \(=\)
Servo Monitor Follow Error \(=1\)

Outputs
Restart/Stop
\(=1\)
Start/Stop
\(=1\)
Analog Position Error
\(=0\) to -10 VDC

Three maintenance stations, spaced approximately 400 feet apart, provide for preventive maintenance and repairs on the track. The fourth station is at the maintenance area switch and can be used to remove and replace a vehicle from spares kept on the 200 foot track in the vehicle maintenance area.

Each maintenance station is equipped with the following ride control equipment:

Power On Indicator
Reset/Stop Switch
Lo/High Speed Switch
Jog Switch
E-Stop Switch

Vehicle Green Light Sensor

Green indicator light
Momentary button
Off/On locked switch
Momentary button
Maintained button, enclosed in a padlock lockable enclosure

Optical offboard IR sensor to provide a "maintenance stop" function at any maintenance station

\subsection*{6.6.2 Maintenance Area and Spare Vehicle Track}

A track switch connects the ride track (through a 75 foot corridor) with a 200 foot maintenance area track. In addition, another switch on the maintenance track allows loading of vehicles from trucks to the maintenance track.

The maintenance area is equipped with the following ride control equipment:
\begin{tabular}{ll} 
Track Switch Controls & E-Stop lockout switch \\
(l20 VAC Pneumatic Valves) & \begin{tabular}{l} 
Trackswitch rotate to 0 Degrees \\
Trackswitch rotate to 90 Degrees
\end{tabular} \\
& Momentary "GO" button \\
Vehicle Control & FWD - REV switch \\
(Pendant Station) & \begin{tabular}{l} 
100-foot power cable reel \\
Vehicle Power
\end{tabular} \\
& 3-pole reversing motor contactor
\end{tabular}

\section*{Slide-rail Bus Bar Power Feed}

All vehicle voltage is fed from the eight channel bus bar (FIGURE 6G) through a vehicle collector (power pick-up) on every vehicle. Power bus channels are assigned as follows:
\begin{tabular}{llll} 
Channel 1 & Inverter L1 \\
Channel 22 & Inverter L2 \\
Channel 3 & Inverter L3 \\
Channel 4 & Building Ground \\
Channel 5 & 120 VAC & L1 \\
Channel 6 & 120 VAC & L2 (Neutral) \\
Channel 7 & 230 VAC & L2 (Neutral) \\
Channel 8 & 230 VAC & L1
\end{tabular}

Power bus bar channels are separated into forty isolated sections which are fed from eleven circuit breakers. The eleven 230 VAC circuit breakers are in the Facilities Electrical Cabinet in the ride equipment room.

The circuit breakers for the three inverter channels are located in the Load Control Switch cabinet in the ride equipment room. Individual bus bar channels are rated at 100 Amps continuous service. Therefore, the Load Switch Control cabinet provides load distribution and protection as well as standby inverter switching capability.

The 120 VAC bus bar feed is controlled from each of four maintenance stations by Electrical Facilities Engineering.

Inverter isolation points ảre eight inches long to allow motor stator fields and currents to reduce to a negligible level at normal ride speed. The isolation point locations are critical to ride load considerations.


FIGURE CG - BUS BAR POWER DISTRIBUTION SYSTEM

TRACK PROFILE (Refer to Dwg C3PD-XZ)

+12 Degree Track Load
```

18-34
77 - 87
111 - 113
88 Amps Per Leg
79 Amps Per Leg
35 Amps Per Leg
0 Degree Track Load

```
```

1l1 - 9
9 - 31
31 - 58
58 - 77
77 - 91
91 - 111

```

87 Amps Per Leg
86 Amps Per Leg
91 Amps Per Leg
77 Amps Per Leg
87 Amps Per Leg
71 Amps Per Leg
- 12 Degree Track Load
```

63 - 74
65 Amps Per Leg 62 Amps Per Leg

```

The Ride Control Computer (RCC OI) serves as the central element of the monitor and diagnostic system (FIGURE 6H). RCC 01 utilizes parallel and serial inputs and outputs.

The objective of this RCC-controlled monitor system requires that the software be flexible enough to accept the following changes without changing the basic structure of the software program.
A. Additional inputs
B. Changes and additions to the system diagnostic C. Output message changes
7.1 Parallel Inputs
\begin{tabular}{cll} 
inputs & from & to \\
\hline & GE Inverters & RPB 01 \\
30 & GE System Control & RPB 02 \\
20 & Ride Track & RPB 02 \\
12 & E-Stop Monitor & RPB 03 \\
16 & Stop Monitor & RPB 03 \\
10 & (4) DC Motor Controls & RPB 04 \\
24 & Expansion & RPB 05
\end{tabular}
7.2 Serial Inputs
\begin{tabular}{cll} 
inputs & from & to \\
\hline 2 & RDC 01 \& RDC 02 & RCC 01 \\
5 & IR Track Cans & RCC 01 \\
1 & Terminal & RCC 01
\end{tabular}
7.3 Parallel Outputs
\begin{tabular}{ccc} 
inputs & from & to \\
\(1(\mathrm{NC})\) & RPB 01 & GE E-Stop
\end{tabular}
7.4 Serial Outputs
inputs from to
\begin{tabular}{lllll}
1 & RCC 01 & ROC 01 (DCM) \\
1 & RCC O1 & ROC 03 (DCM) \\
1 & RCC O1 & \(\quad\)\begin{tabular}{ll} 
Printer
\end{tabular}
\end{tabular}


FIGURE 7A - GPRCS BLOCK DIAGRAM

\section*{Monitor System Messages}

The RCC Ol monitor system utilizes serial outputs to two console CRT's (Load Console and Ride Equipment Room Console) to display system operational messages and maintenance messages. In addition, the printer (in the Equipment Room) provides a hard copy for maintenance messages.

Hardware Displays
The GE Equipment utilizes a number of displays to assist the maintenance personnel. Refer to the GE inverter system documentation for information.

\section*{Serial Inputs}

RDC 01 \& 02 - Input serial data as it relates to the operation of the TV Finale (synchronization of traveling video screen frame position to vehicle position).

IR Trackside Cans - located at the four maintenance stations and the entrance to the Finale Area. The IR receivers get information from a microcomputer on the ride vehicle. The vehicle computer serial message includes an eight bit identification number and six bits of ride vehicle status data.

RPB I/O Tables
The following tables list the input and output functions accommodated by the RPB's.
\begin{tabular}{|c|c|c|c|c|}
\hline INPUT & FUNCTION & NORMAL RUN STATE & FROM & TO \\
\hline 1IOT & OVERTEMP & NC & PWM 01 & RPB 01 \\
\hline 1IOL & OVERLOAD & NC & PWM 01 & RPB 01 \\
\hline 1 IFLT & PWM RDY OR STBY & NC & PWM 01 & RPB 01 \\
\hline 1TFLT & PWM 01 FAULT & NC & PWM 01 & RPB 01 \\
\hline IRUNX & PWM READY & NC & PWM 01 & RPB 01 \\
\hline 2IOT & OVERTEMP & NC & PWM 02 & RPB 01 \\
\hline 2IOL & OVERLOAD & NC & PWM 02 & RPB 01 \\
\hline 2IFLT & PWM RDY OR STBY & NC & PWM 02 & RPB 01 \\
\hline 2TFLT & PWM 02 FAULT & NC & PWM 02 & RPB 01 \\
\hline 2RUNX & PWM READY & NC & PWM 02 & RPB 01 \\
\hline 310 T & OVERTEMP & NC & PWM 03 & RPB 01 \\
\hline 3IOL & OVERLOAD & NC & PWM 03 & RPB 01 \\
\hline 3 IFLT & PWM RDY OR STBY & NC & PWM 03 & RPB 01 \\
\hline 3TFLT & PWM 03 FAULT & NC & PWM 03 & RPB 01 \\
\hline 3RUNX & PWM READY & NC & PWM 03 & RPB 01 \\
\hline 4IOT & OVERTEMP & NC & PWM 04 & RPB 01 \\
\hline 4IOL & OVERLOAD & NC & PWM 04 & RPB 01 \\
\hline 4 IFLT & PWM RDY OR STBY & NC & PWM 04 & RPB 01 \\
\hline 4 TFLT & PWM 04 FAULT & NC & PWM 04 & RPB 01 \\
\hline 4RUNX & PWM READY & NC & PWM 04 & RPB 01 \\
\hline 5 IOT & OVERTEMP & NC & PWM 05 & RPB 01 \\
\hline 5IOL & OVERLOAD & - NC & PWM 05 & RPB 01 \\
\hline 5IFLT & PWM RDY OR STBY & NC & PWM 05 & RPB 01 \\
\hline 5 TFLT & PWM 05 FAULT & NC & PWM 05 & RPB 01 \\
\hline 5RUNX & PWM READY & NC & PWM 05 & RPB 01 \\
\hline 6IOT & OVERTEMP & NC & PWM 06 & RPB 01 \\
\hline 6IOL & OVERLOAD & NC & PWM 06 & RPB 01 \\
\hline 6 IFLT & PWM RDY OR STBY & NC & PWM 06 & RPB 01 \\
\hline 6 TFLT & PWM 06 FAULT & NC & PWM 06 & RPB 01 \\
\hline 6RUNX & PWM READY & NC & PWM 06 & RPB 01 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline INPUT & FUNCTION & NORMAL RUN STATE & FROM & TO \\
\hline RST & RIDE RESET & NC & MCC 01 & RPB 02 \\
\hline STP & RIDE STOP & NC & MCC 01 & RPB 02 \\
\hline LO SPD & LOW SPEED & NC & MCC 01 & RPB 02 \\
\hline HI SPD & HIGH SPEED & NC & MCC 01 & RPB 02 \\
\hline BRAKE & BRAKES OFF & NC & MCC 01 & RPB 02 \\
\hline ICBX & CIRCUIT BREAKER 1 & NC & MCC 01 & RPB 02 \\
\hline 2CBX & CIRCUIT BREAKER 2 & NC & MCC 01 & RPB 02 \\
\hline 3CBX & CIRCUIT BREAKER 3 & NC & MCC 01 & RPB 02 \\
\hline 4CBX & CIRCUIT BREAKER 4 & NC & MCC 01 & RPB 02 \\
\hline 5 CBX & CIRCUIT BREAKER 5 & NC & MCC 01 & RPB 02 \\
\hline 6 CBX & CIRCUIT BREAKER 6 & NC & MCC 01 & RPB 02 \\
\hline 7CBX & CIRCUIT BREAKER 7 & NC & MCC 01 & RPB 02 \\
\hline 8CBX & CIRCUIT BREAKER 8 & NC & MCC 01 & RPB 02 \\
\hline 9CBX & CIRCUIT BREAKER 9 & NC & MCC 01 & RPB 02 \\
\hline l0CBX & CIRCUIT BREAKER 10 & NC & MCC 01 & RPB 02 \\
\hline 11 CBX & CIRCUIT BREAKER 11 & NC & MCC 01 & RPB 02 \\
\hline 12CBX & CIRCUIT BREAKER 12 & NC & MCC 01 & RPB 02 \\
\hline 1RTS & 1 DC RECT OVERTEMP & NC & MCC 01 & RPB 02 \\
\hline 2RTS & 2 DC RECT OVERTEMP & NC & MCC 01 & RPB 02 \\
\hline 3RTS & 3 DC RECT OVERTEMP & NC & MCC 01 & RPB 02 \\
\hline ESTOP & E STOP FUNCTION & NC & MCC 01 & RPB 02 \\
\hline PR1 & INVERTER PERM RUN 1 & - NC & MCC 01 & RPB 02 \\
\hline PR2 & INVERTER PERM RUN 2 & NC & MCC 01 & RPB 02 \\
\hline S RUN & ALL GE EQPT RUN & NC & MCC 01 & RPB 02 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline INPUT & FUNCTION & NORMAL RUN STATE & FROM & To \\
\hline LDE & LOAD CONSOLE E STOP & NC & ROC 01 & RPB 03 \\
\hline ULDE & UNLOAD CONSOLE E STOP & NC & ROC 02 & RPB 03 \\
\hline EQPTE & EQPT CONSOLE E STOP & NC & ROC 03 & RPB 03 \\
\hline M1E & MAINT STA 1 E STOP & NC & RMS 01 & RPB 03 \\
\hline M1E & MAINT STA 1 E STOP & NC & RMS 01 & RPB 03 \\
\hline M2E & MAINT STA 2 E STOP & NC & RMS 02 & RPB 03 \\
\hline M2E & MAINT STA 2 E STOP & NC & RMS 02 & RPB 03 \\
\hline M3E & MAINT STA 3 E STOP & NC & RMS 03 & RPB 03 \\
\hline M3E & MAINT STA 3 E STOP & NC & RMS 03 & RPB 03 \\
\hline M4E & MAINT STA 4 E STOP & NC & RMS 04 & RPB 03 \\
\hline M4E & MAINT STA 4 E STOP & NC & RMS 04 & RPB 03 \\
\hline TRKSWE & TRACK SWITCH E STOP & NC & RTS 01 & RPB 03 \\
\hline TRKLKE & TRACK LOCK E STOP & NC & RTS 01 & RPB 03 \\
\hline TRKLME & TRACK LIMIT E STOP & NC & RTS Ol & RPB 03 \\
\hline TRKPE & TRACK PUSHBUTTON E STOP LOCAL E STOP & NC & RTS 01 & RPB 03 \\
\hline LDBLTE & LOAD BELT COMB SWITCH & NC & ROC 01 & RPB 03 \\
\hline ULDBLTE & UNLOAD BELT COMB SWITCH & NC & ROC 02 & RPB 03 \\
\hline STOP & MAINT STA 1 STOP & NC & RMS 01 & RPB 03 \\
\hline STOP & MAINT STA 2 STOP & NC & RMS 02 & RPB 03 \\
\hline STOP & MAINT STA 3 STOP & NC & RMS 03 & RPB 03 \\
\hline STOP & MAINT STA 4 STOP & NC & RMS 04 & RPB 03 \\
\hline STOP & LOAD CONSOLE STOP & NC & ROC 01 & RPB 03 \\
\hline STOP & UNLOAD CONSOLE STOP & NC & ROC 02 & RPB 03 \\
\hline STOP & EQPT CONSOLE STOP & NC & ROC 03 & RPB 03 \\
\hline STOP & TRACK SWITCH STOP & NC & RTS 01 & RPB 03 \\
\hline STOP & TRACK CRACK DETECT 1 & NC & RTD 01 & RPB 03 \\
\hline STOP & TRACK CRACK DETECT 2 & NC & RTD 02 & RPB 03 \\
\hline STOP & TRACK CRACK DETECT 3 & NC & RTD 03 & RPB 03 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline INPUT & FUNCTION & NORMAL RUN STATE & FROM & TO \\
\hline 6 RUNX & LOAD BELT RUN & NC & RMC Ol & RPB 04 \\
\hline 6TOL & OVERTEMP & NC & RMC Ol & RPB 04 \\
\hline 60LX & OVERLOAD & NC & RMC Ol & RPB 04 \\
\hline 6 PR & RDY TO RUN & NC & RMC Ol & RPB 04 \\
\hline 6 AUTO & AUTO MODE & NC & RMC 01 & RPB 04 \\
\hline 6 BR & BRAKE & NC & RMC Ol & RPB 04 \\
\hline 7 RUNX & UNLOAD BELT RUN & NC & RMC 02 & RPB 04 \\
\hline 7TOL & OVERTEMP & NC & RMC 02 & RPB 04 \\
\hline 70LX & OVERLOAD & NC & RMC 02 & RPB 04 \\
\hline 7 PR & RDY TO RUN & NC & RMC 02 & RPB 04 \\
\hline 7AUTO & AUTO MODE & NC & RMC 02 & RPB 04 \\
\hline 7 BR & BRAKE & NC & RMC 02 & RPB 04 \\
\hline 8RUNX & HANDRAIL RUN & NC & RMC 03 & RPB 04 \\
\hline 8TOL & OVERTEMP & NC & RMC 03 & RPB 04 \\
\hline 80LX & OVERLOAD & NC & RMC 03 & RPB 04 \\
\hline 8PR & RDY TO RUN & NC & RMC 03 & RPB 04 \\
\hline 8AUTO & AUTO MODE & NC & RMC 03 & RPB 04 \\
\hline 8BR & BRAKE & NC & RMC 03 & RPB 04 \\
\hline 9RUNX & FRAME RUN & NC & RMC 04 & RPB 04 \\
\hline 9TOL & OVERTEMP & NC & RMC 04 & RPB 04 \\
\hline 90LX & OVERLOAD & NC & RMC 04 & RPB 04 \\
\hline 9PR & RDY TO RUN & NC & RMC 04 & RPB 04 \\
\hline 9AUTO & AUTO MODE & NC & RMC 04 & RPB 04 \\
\hline 9BR & BRAKE & NC & RMC 04 & RPB 04 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline INPUT & FUNCTION & NORMAL RUN STATE & FROM & TO \\
\hline INV 1 & INV 1 STBY & NC & MCC 01 & RPB 05 \\
\hline INV 2 & INV 2 STBY & NC & MCC 01 & RPB 05 \\
\hline INV 3 & INV 3 STBY & NC & MCC 01 & RPB 05 \\
\hline INV 4 & INV 4 STBY & NC & MCC 01 & RPB 05 \\
\hline INV 5 & INV 5 STBY & NC & MCC 01 & RPB 05 \\
\hline INV 6 & INV 6 STBY & NC & MCC 01 & RPB 05 \\
\hline SS1 & STA SELECT LOAD & NC & MCC 01 & RPB 05 \\
\hline SS2 & STA SELECT EQPT & NC & MCC 01 & RPB 05 \\
\hline SS3 & STA SELECT M1 & NC & MCC 01 & RPB 05 \\
\hline SS4 & STA SELECT M2 & NC & MCC Ol & RPB 05 \\
\hline SS5 & STA SELECT M3 & NC & MCC 01 & RPB 05 \\
\hline SS6 & STA SELECT M4 & NC & MCC 01 & RPB 05 \\
\hline
\end{tabular}


Vehicle Green Light Detector 1 through 4 Pipe Track Detector 1 through 3

Three Operator Consoles (DCM's), ROC 01, ROC 02, and ROC 03, are utilized for operation of the Ride Control System. The functions and locations of the Operator Consoles are detailed as follows:
9.1 Load Console - ROC 01

Located in ride passenger loading area adjacent to the load belt walkway.
9.1.1 Touchscreen Control Functions

Parallel outputs
1. Ride Reset/Stop - alternate action to GE MCC 01
2. Ride Lo/Hi Speed - alternate action to GE MCC 01 speed control
3. Command Enter/Cancel - required to enter all commands except Lo/Hi speed
4. Frames Start/Stop - starts frame drives via GE/MCC Ol
5. Load Belt Start/Stop - starts load belt walkway and handrail drives via GE/MCC 01

Parallel inputs
1. Ride Reset - acknowledge ride reset
2. Ride Speed - acknowledge Lo or Hi speed
3. Frame Start - acknowledge frame start
4. Load Belt Start - acknowledge load belt start
5. Unload Belt Run - monitor unload belt status

Serial inputs
A portion of the Touchscreen CRT is used to display messages for Operations and Maintenance personnel. This data is sent from the RCC 01 Monitor Computer via a serial link.```

